首页> 外文OA文献 >Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids
【2h】

Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids

机译:非结构网格的三维高阶谱有限体积法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve three-dimensional problems for any order of accuracy are then presented. Important aspects of the data structure are discussed. Comparisons with the Discontinuous Galerkin (DG) method are made. Numerical examples for wave propagation problems are presented.
机译:许多区域需要非常复杂的形状守恒律的高阶精确数值解。本文针对非结构化网格的频谱有限体积(SV)方法的三个维度进行了扩展,旨在解决此类问题。我们首先总结了传统方法的局限性,例如结构化和非结构化网格的有限差分和有限体积。然后,我们描述频谱有限体积法的基本公式。对于非结构化三角形或四面体网格,SV方法与常规高阶有限体积方法的区别在于数据重建。通过使用每个网格单元(称为频谱体积(SV))划分为“结构化”子单元(称为控制体积(CV)),可以代替使用相邻单元的较大模板执行高阶重构而构造模板。可以证明,如果所有SV单元以几何相似的方式划分为多边形或多面体CV子单元,则所有SV的重构都将变得通用,而不管其形状,大小,方向或位置如何。由此可知,重构被简化为仅涉及几个简单加法和乘法的未知数的加权总和,并且这些权重是通用的,并且可以一次全部确定。因此,该方法非常有效,准确并且在几何上是灵活的。 SV方法最关键的部分是将SV划分为CV。在本文中,我们提出了将四面体SV划分为具有一个自由参数的多面体CV,以进行多项式重构,精度达到5级。 (请注意,该方法的精确度比重建精度高1阶。)自由参数将通过最小化重建矩阵的Lebesgue常数或类似准则来确定,以获得最佳分区。然后介绍了有效,可并行化的代码的细节,该代码可解决任何精度级别的三维问题。讨论了数据结构的重要方面。与不连续Galerkin(DG)方法进行了比较。给出了波传播问题的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号